

Energy Efficiency Incentive through Investment Tax Allowance (ITA) & Pioneer Status

By: Norazrin Bin Rupadi Executive Demand Side Management Unit Suruhanjaya Tenaga

Presentation Outline

- Overview of Energy Efficiency Incentive
- Suruhanjaya Tenaga Technical Evaluation Process
- Technical Report Guideline
- Example Energy Efficiency ITA evaluation calculation
- Status ITA Application

Overview of Energy Efficiency Incentive

ELIGIBLE COMPANIES Conservation **Services**

• Pioneer Status (PS) with tax exemption of 100% of statutory income for 10 years

• Investment Tax Allowance (ITA) of 100% on qualifying capital expenditure incurred within a period of 5 years to be utilized against 100% of the statutory income for each year of assessment (Through Energy Performance Contracting (EPC) Services Activity)

Companies which incur capital expenditure for conserving energy for own consumption ALL APPLICATION OF EE

 ITA of 100% on gualifying capital expenditure incurred within a period of 5 years to be utilised against 100% of the statutory income for each year of assessment

INCENTIVES SHALL APPLY

THROUGH MIDA

Suruhanjaya Tenaga Technical Evaluation Process

General Criteria of EE ITA

Evaluation

Energy Efficiency

• Ex 1: Chiller replacement with high efficient chiller

• Ex 2: Application of VSD at pump and motor

Energy Conservation

• Ex 1: Heat pump application

 $ROI \le 10$

Years

- Ex 2: Heat Recovery
- Ex 3: Co-Generation

For Lighting type of project, under LHDN and MOF code of definition, it was not categorized as CAPEX as the nature of lighting to be replaced yearly basis (consumable), thus, lighting will not be considered under the existing ITA.

Technical Report Guideline

Part A: Project site and summary of the Project

Name and location of plant/facilities

- What is the name of the plant / facilities?
- Where is the location of the plant / facilities? (Complete address)
- What is the nature of business of the plant/facilities?

Brief Description of the Project

- What is the project?
- What is the objective of the project?
- What is the project implementation and completion date?
- Modification/improvement of existing equipment or systems
- Introduction of new technologies or applications/ replacement of old equipment with more high efficient technologies or systems.

Part B: Project site energy detail

Part B: Continue

Current energy consumption

- What is the monthly and annual consumption? (ie. kWh/mmBTU/RTH & RM)
- What is the monthly maximum demand? (kW, RT and RM)
- What is the operating hour of the electricity, fuel (Natural gas) and chilled water (GDC)?

Current plant / equipment energy performance such as efficiency level

- For example: for a chiller, what is the kW/RT or COP?
- For building, what is the kWh/m2/year?

Part C: Project details

 What is the detail of the technologies / equipment? (make, capacity, application, origin)

Description of the technologies / equipment to be applied

- What does it do?
- How will it increase efficiency / conserve energy at the premise?
- What is the energy efficiency principal of the equipment?

Function of each equipment / devices contributing to increase efficiency / conserve energy

Part D: Project Cost details

Project Cost

total costs and the itemized cost of the project covering each equipment and its components/parts involved in the Project, installation, operating and maintenance. (In table form)

Part E: Project energy efficiency & conservation potential details

Comparison of energy consumption data and efficiency Types of level between energy to baseline with be saved. estimated (electricity, saving in table diesel, fuel, form

etc)

Method and calculation of energy conservation potential (Detail calculation on saving and methodology used, please also indicate all assumptions eg. Operation hours, tariff)

Estimated energy cost savings: Potential cost savings from electricity and/or fuel energy

Payback period/Return of investment (ROI) from the project

Part F: Project implementation plan

Example Energy Efficiency ITA evaluation calculation

< 🗩	Suruhanjaya Tenaga
	Energy Commission

	90:			
	atil			
	Item	System Chiller	System Chiller	
	EVa	(Old)	New	
	Cooling Canacity	80 tons	80 tons	
	Power Vepacity	84 kW	39 kW	
Je	Efficiency LEevel	1.2 kW/RT	0.65 kW/RT	
ant l	Daily energy usage (Operation	n period = 24 Hour/daily)		
to Co	Estimated Energy Usage	24Hr x 1.2 Kw/ton x 80	24Hr x 0.65 Kw/ton x 80	
		tons = 2,304 kWj Daily	ton= 1,248 kWj Daily	
	Estimated Energy Cost (RM)	2,304kWh daily x	1,248kWh daily x	
		RM0.397/kWh	RM0.397/kWh =RM 495	
		= RM 914.7		
	Total Energy Usage	RM 914.7 x 30	RM495 X 30	
	Per Month	= RM 27,440	= RM 14,850	
	Total Energy Usage	2,304kWh daily x 30 days	1,248kWh daily x 30 days	
	Per Year	= 69,120 kWh	= 37,440 kWh	
	Total Energy Cost	RM 27,440 X 12 months	RM 14,850 X 12 months	
	Per Year	=RM 329,287	= RM 178,200	
	Total Energy Cost saving	RM 329,287 - RM 178,200		
	Per Year	= RM 151,087		
	Percentage saving	RM 151,087 = 39%		
	Per Year	RM 384,120		
	Project Cost	RM249,000- Equipment cost Total project cost: RM 344,000		
	Estimated ROI	RM 344,000 = 2.3 Years @ 2 Years 4 Months		
		RM 151,087		

Perkara	Hybrid Condenser heat recovery Shower + Basin
Jumlah Permintaan Air Panas pada 40°C	35,200 liters
air yang perlu dipanaskan Garr 25°C ke 40° C	= 42.8% x 35,200 liters = 15,065.60 liters
Jumlah penggunaan tenaga elektrik	= 15,065.60 liters x (60°C - 33°C) x
bagi memanaskan air	4.186/3600
	= 473 kWj
Jumlah penggunaan tenaga	= 473 kWj + (0.2x 473 kWj) kWj
(termasuk 20% heat loss) sehari	= 567.6kWj
	<u>567.6 kWj</u>
	5.28 (COP)
	= 107.5 kWj sehari
Kos Penggunaan Elektrik Setahun	107.5 kWj x RM0.365 kWj
	= RM 39.24 Sehari
	=RM 14,321.69 Setahun
Kos elektrik boiler setahun	RM 52,324.12
Penjimatan Setahun	RM 52,324.12 - RM 14,321.69
	Setahun
	=RM 38,002.43

Status ITA Application

Status ITA Application

tion

ITA Application Statistic	2012	2013	2014* Up until Sep 2014
No. of ITA Application received	35	17	7
No. of ITA Project	63	24	14
No. of ITA Project approved	42	19	7
No. of ITA Project rejected	25	5	0
Estimated kWh saving per Year	46,989,664.00	25,355,241.21	15,623,175.40

Example of Energy Efficiency project submitted:

- High efficient variable speed screw chiller with VSD
- Hybrid Ambient Heat Recovery
- High Efficient Cooling Tower
- Energy Efficient Control System

Please Contact:

Unit Pengurusan Penggunaan Tenaga Jabatan Pengurusan Tenaga dan Pembangunan Industri Suruhanjaya Tenaga No. 12, Jalan Tun Hussein Onn, Precinct 2, 62100, Putrajaya Tel: 03-8870 8500 ext. 8693 Fax: 03-8870 8648 Website: www.st.gov.my

